First-principles study and modeling of strain-dependent ionic migration in ZrO2
نویسندگان
چکیده
Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One promising candidate is doped zirconia. In the past its ionic conductivity has mainly been increased by decreasing its thickness. However, the influence of the thickness is only linear, whereas the impact of migration barriers is exponential. Therefore understanding the oxygen transport in doped zirconia is of fundamental importance. In this work we pursue the approach of the strain dependent ionic migration in zirconia. We investigate how the migration barriers for oxygen ions respond to a change of the atomic strain. We employ the method of Density Functional Theory (DFT) calculations to relax the atomic configurations to the ground state. In connection with the Nudged Elastic Band (NEB) method we obtain the migration barrier of the oxygen ion jumps in zirconia for a given lattice constant. Similar to other publications we observe a decrease in the migration barrier for expansive strain, but in addition we also find a migration barrier decrease for high compressive strains beyond a maximal height of the migration barrier at an intermediate compressive strain. We present a simple analytic model which, by using interactions of the Lennard-Jones type, gives an explanation for this behavior.
منابع مشابه
A comparative study on constitutive modeling of hot deformation flow curves in AZ91 magnesium alloy
Modeling the flow curves of materials at elevated temperatures is the first step in mathematical simulation of the hot deformation processes of them. In this work a comparative study was provided to examine the capability of three different constitutive equations in modeling the hot deformation flow curves of AZ91 magnesium alloy. For this, the Arrhenius equation with strain dependent constants...
متن کاملModeling Solubility Behavior of CO2 in [C2-mim][BF4] and [C4-mim][BF4] Ionic Liquids by sPC-SAFT Equation of State
The simplified perturbed chain statistical associating fluid theory (sPC-SAFT) Equation of State (EOS) was proposed to describe the thermodynamic properties of pure ionic liquids (ILs). A set of sPC-SAFT parameters for 2 ILs was obtained by fitting the experimental liquid densities data over a wide range of temperature at atmospheric pressure. Good agreement with experimental density data was o...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملAdhesion of ultrathin ZrO2„111... films on Ni„111... from first principles
We have studied the ZrO2~111!/Ni~111! interface using the ultrasoft pseudopotential formalism within density functional theory. We find that ZrO2(111) adheres relatively strongly at the monolayer level but thicker ceramic films interact weakly with the Ni-substrate. We argue that the cohesion changes character from dominantly image charge interactions for thick ceramic films to more covalent fo...
متن کاملStudy of elastic and piezoelectric properties of two-dimensional hexagonal III-V binary compounds: First-principles calculations
In this work, using plane wave method in the framework of density-functional theory, we calculated clamped-ion and relaxed-ion elasticity, stress and strain piezoelectric independent coefficients for seven stable combinations of honeycomb monolayers XY (X:B,Al,Ga,In ; Y:N,P,As,Sb). The coefficients calculations by two methods of density functional perturbation theory (DFPT) and finite differenc...
متن کامل